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Abstract
In this paper we analyse the structure of the UNSAT-phase of the over-
constrained 3-SAT model by studying the low temperature phase of the
associated disordered spin model. We derived the full replica symmetry
breaking (RSB) equations for a general class of disordered spin models
which includes the Sherrington–Kirkpatrick (SK) model, the Ising p-spin
model as well as the over-constrained 3-SAT model as particular cases. We
have numerically solved the ∞-RSB equations using a pseudo-spectral code
down to and including zero temperature. We find that the UNSAT-phase of
the over-constrained 3-SAT is of the ∞-RSB kind: in order to get a stable
solution the replica symmetry has to be broken in a continuous way, similarly
to the SK model in an external magnetic field.

PACS numbers: 75.10.Nr, 02.10.Ab, 05.20.−y

1. Introduction

A combinatorial optimization problem is defined, in a broad sense, by specifying a certain
number of free variables constituting it and the conditions that its solution must satisfy. In
treating an optimization problem the fundamental step is to find the most efficient algorithm
yielding the solution. This algorithm is efficient from the point of view of all the computing
resources needed for its performance, the most important of them being the time requirement,
and, in particular, its dependence on the size of the problem. By size we mean, in an informal
way, the number of variables, or even the number of conditions.
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A computational hard problem [1, 2] is an optimization problem for which the time needed
to find the solution, or to determine with certainty that it has no solution, increases with the
size very sensitively. More specifically, there are no polynomial algorithms capable of solving
it. These kinds of problems are, therefore, called intractable or non-polynomial (NP).

Any NP problem can be reduced to a particular NP paradigmatic problem (the SAT
problem) exploiting algorithms performing such a mapping in a polynomial time [3, 4].
Computer scientists call this class of very hard combinatorial optimization problems non-
polynomial complete (NPC) problems [1].

Summing up, an NPC problem is defined in a qualitative way as an optimization problem
whose solutions or the certainty that it has no solution can only be found, in the worst case,
by algorithms whose computation time grows faster than any polynomial with the number of
variables of the system.

In this paper we consider the 3-SAT problem [4]. This is a particular version of the SAT
problem, which is the paradigm of NPC combinatorial problems showing a phase transition.
For this problem the free variables are Boolean variables and the conditions are sets of three
Boolean numbers. Its importance, apart from being a historical one, comes from the fact that
even if theoretically any NPC problem can be mapped to any other, in practice given problems
are better suited for proving such correspondence. Of these reference problems one of the
most useful (and used) is the 3-SAT.

In the past years, a one-to-one correspondence has been observed between computational
hard problems and the ground state properties of spin-glass models [5, 6]. Statistical mechanics
has been applied to the study of universal behaviour in the computational cost of some class
of algorithms, searching for solutions of random realizations of the prototype of the NPC
problems: the satisfaction (SAT) problem [7]. The investigation of the properties of NPC
problems is then performed through the introduction of an energy or cost function and an
artificial temperature. In this mapping the actual NPC problem is recovered as the T = 0 limit
of the associated statistical mechanical problem. Such an approach has been implemented
both numerically, using simulated annealing algorithms [8], and analytically.

To set up a statistical mechanical approach one first introduces a semidefinite positive
Hamiltonian H[C] function, defined for each given instance C of the problem, constructed
in such a way that if the configuration C∗ is the solution of the computational problem then
H[C∗] = 0. In contrast, if H[C] > 0 for any C then the problem does not admit a solution.
Having defined a Hamiltonian, the associated statistical mechanical problem is described by
the partition function

Z(β) =
∑
C

exp(−βH[C]) (1)

where β−1 = T is the (artificial) temperature of the system. Proceeding further one introduces
the usual thermodynamic quantities, e.g. the energy

U(β) = −∂ ln(Z(β))

∂β
. (2)

The mapping is not trivial since intensive quantities, such as the energy density u ≡ U/N ,
do not depend on N in the infinite N limit, so that a computation of their average over
the distribution of instances of the computational problem is sufficient to obtain relevant
information on its satisfiability.

Eventually, to recover the original computational problem, the limit T → 0 has to be
taken. We stress that in this approach temperature only plays a role for the construction of a
statistical mechanics problem, of which the only interesting features are those at T = 0.
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In this approach, phase transition concepts play an important role to build a theory
for typical case complexity in theoretical computational science. The importance comes
from the fact that NPC decision problems that are computationally hard in the worst case
may not be in the typical case if one excludes the critical regions of the parameter space
where almost all instances become computationally hard to solve. The computational critical
region corresponds to a phase transition region in statistical mechanics language. Far from
phase boundaries the problems are either under-constrained or over-constrained and one can
determine search procedures capable of finding solutions or the certainty of no solution
in polynomial times: the results of worst case complexity theory are not very relevant in
practice and what is necessary is a theory for typical case complexity. To such a purpose, the
analysis of general search methods applied to different classes of hard computational problems,
characterized by a large number or relevant, randomly generated variables is fundamental.

Variables are under-constrained when the minimal number of violated clauses does not
depend on their possible assignments. In particular this is true when they do not appear in any
clause. In the under-constrained phase the clauses of the problem can always be satisfied (SAT
phase). In contrast, variables are over-constrained when they cannot satisfy all the clauses
imposed on them simultaneously. In this case we are in the UNSAT phase. Going back to
the mapping onto a statistical mechanical problem, the UNSAT-phase corresponds to a frozen
(spin-glass) phase while the SAT-phase corresponds to an ordered (ferromagnetic) phase.

The 3-SAT problem and, in general, the K-SAT problem where the clauses contain a
number K of elements, can be mapped onto a diluted long-range spin-glass model [5, 6]. The
model is mean-field because of the lack of geometrical correlations in the clauses. However,
since each spin has only a finite number of neighbours, strong local field fluctuations, stronger
than in those of a fully connected spin-glass, are present.

The relevant parameter driving the SAT/UNSAT transition is the ratio α between clauses
and the number of variables of the system,which is the connectivity in the statistical mechanical
analogue of the combinatorial problem.

Indeed too many conditions cause the unsatisfiability of the problem. The entropy of
the associated spin model gives a measure of the typical number of solutions. Therefore, at
the transition an abrupt disappearance of all (exponentially numerous) solutions makes the
entropy jump to zero.

For K = 1 and 2 the problem is solvable: the time to find the solutions grows polynomially
(actually even linearly [3]) with the number of variables. For K � 3 the problem is,
in contrast, NPC. The transition threshold for 3-SAT has been determined numerically at
αc(3) � 4.25−4.30 [9].

Based on the mapping of random clauses onto the quenched disorder of the associated
spin model, in [5, 6] the replica trick was introduced to compute the statistical mechanics of the
K-SAT problem and the replica symmetric (RS) theory was carried out. The K-SAT problem
is naturally mapped onto a disordered spin model with finite connectivity, where the role of
connectivity is played by the density of clauses. Even if it gives a qualitative good pattern of
the transition it is, however, unable to predict correctly the value of the transition threshold
between the SAT-phase and the UNSAT-phase and the correct thermodynamic quantities in
the UNSAT-phase.

The failure of the RS solution can be traced back to the existence of a very large number of
equilibrium states of the associated statistical mechanical problem in the thermodynamic limit
N → ∞. To deal with those, and improve the knowledge of the structure of the solutions
of the decision problem, it is necessary to break the replica symmetry. Replica symmetry
breaking (RSB) in diluted models is a very hard issue due to the complex structure of the
saddle point equations (for recent approaches see [10, 11]).
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As shown in [12] the SAT/UNSAT transition results from the sudden freezing of a finite
number of variables, as α increases above αc. These variables form a backbone that does not
disappear in the thermodynamic limit. Information about the structure of this backbone and
the mutual overlap between different assignments minimizing the cost function in the UNSAT
phase is, then, very important to understand the transition.

In an attempt to overcome the difficulty of solving a spin-glass diluted model, a variational
approach, both for RS and 1-RSB solutions, has been recently proposed. It is based
on the existence of the backbone of over-constrained variables that remains finite in the
thermodynamic limit [13]. This circumvents the necessity of solving the self-consistent
equations for RS and 1-RSB, but does not resolve the question about the nature of the RSB
solution in the UNSAT-phase. Thus the relation between the RSB transition and the typical
case complexity theory is yet an open question.

In order to investigate the nature of the RSB solution in the UNSAT-phase, in this paper
we shall consider the K-SAT problem with K = 3, the simplest NPC problem of this class, in
the limit of a large number of clauses α� 1 (over-constrained), where the associated statistical
mechanical problem can be handled with known techniques of disordered spin systems. The
basic idea is that since there should be no other transitions for α > αc, the structure of the
UNSAT-phase forα� αc should be representative of the whole UNSAT-phase in the rangeα >
αc. Performing a careful study of the thermodynamic quantities down to zero temperature of
the associated disordered spin model we find that the RSB is infinitely broken (∞-RSB) in
the UNSAT-phase.

Moreover, using the first two terms in the asymptotic expansion in 1/
√
α of the

thermodynamic quantities, we can obtain an upper bound for αc.
The paper is organized as follows. In section 2 we introduce the model. The details

of the derivation of the ∞-RSB solution with an arbitrary gauge are given in section 4.
The calculation is carried out for a general model introduced in section 3, to which the
over-constrained 3-SAT problem belongs. Here we also sketch the procedure used for the
numerical solution of the ∞-RSB. The ∞-RSB solution for the over-constrained 3-SAT
model is discussed in sections 5 and 6.

2. The over-constrained 3-SAT model

The model we study has been introduced in [14], where the analysis of RSB at one and two
steps has been carried out. The 3-SAT model is defined by a set of Boolean variables s(i) =
0, 1, defined on the sites i = 1, . . . , N and an ensemble of randomly generated 3-SAT
Boolean formulae. First the random Boolean formulae are constructed by assigning to each
triplet {i1, i2, i3} with i1 < i2 < i3, a set of three independent variables ε1,2,3 which take
the value +1 or −1 with probability 1/2. Next, for each instance of the problem triplets of
randomly chosen sites {i1, i2, i3} are selected by assigning to the variables ri1,i2,i3 the value 1
with probability p ≡ αN−2 and 0 with probability 1 − p. ForN → ∞ there are αN variables
r which are different from zero, and hence αN 3-SAT Boolean formulae.

If we introduce the spin variables σ(i) = 1 − 2s(i), the cost function reads

H =
∑

i1<i2<i3

ri1,i2,i3
1 − ε(i1,i2,i3)1 σ(i1)

2

1 − ε(i1,i2,i3)2 σ(i2)

2

1 − ε(ii ,i2,i3)3 σ(i3)

2
. (3)

which is nothing but the number of unsatisfied clauses. Indeed it is easy to see that each term
is either 1 (unsatisfied) or 0 (satisfied). Note that H = 0 if and only if all the clauses are
satisfied.
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The statistical mechanical approach to the 3-SAT problem takes H as the Hamiltonian of
a disordered spin system and, as discussed above, studies the properties of the ground state.

The fundamental quantities in studying the hard optimization problems with the tools
of statistical mechanics are the zero temperature energy and entropy densities, respectively,
u0 and s0, in the thermodynamic limit. Here u0 represents the average over the distribution
of the number of clauses that are not satisfied by the formula (3) and s0 is the logarithm of
the number of solutions satisfying the formula divided by the number of variables. For the
behaviour of these quantities as functions of the connectivity-like parameter α, the conjecture
is done [5, 6] that

u0(α) = 0 s0(α) > 0 for α < αc (4)

u0(α) > 0 s0(α) = 0 for α > αc. (5)

For α � αc the problem is quite under-constrained and it is relatively easy to find an
assignment of variables σ i satisfying the clauses. In other words for α < αc the problem is
SAT, with probability going to 1 for N → ∞. In contrast, for α > αc the problem does
not have solutions, i.e. UNSAT-phase. The analysis of the UNSAT-phase is, in general,
rather hard. The most difficult case occurs around αc where an exponential time may be
needed to determine the unsatisfiability. Away from the critical region, i.e. α � αc, to prove
unsatisfiability is easier, and more insight into the structure of the phase space can be gained.

In the present paper we will work on the over-constrained approximation α � αc, where
the computation strongly simplifies. This limit is obtained by expanding in 1/

√
α to the

second order, after having rescaled the temperature β → β/
√
α. For further details see [14].

Note that in [14] the reduced inverse temperature was β = µ/√α. Here we will, instead,
keep the notation β also for the reduced inverse temperature. Moreover, in [14] the clauses
are erroneously over-counted in the evaluation of the partition function3. This, however, does
not produce any relevant change, apart from a rescaling of the reduced temperature and of the
energy and the free energy of a factor 1/

√
6, leaving the entropy invariant4. In order to make

a comparison with the results shown there, it is enough to multiply β, the free energy and the
energy shown in the present paper by a factor

√
6.

3. The replica approach in a generalized form

The 3-SAT model belongs to the family of spin models interacting via quenched random
couplings. These are described by a random Hamiltonian H[J ; σ ] where J are the random
‘quenched’ couplings. For example, in the Sherrington–Kirkpatrick (SK) model J is a
symmetric Gaussian matrix of zero mean and variance proportional to 1/N [16], while in
its p-spin generalization the variance goes like 1/Np−1 [17]. For the 3-SAT problem the
disorder is introduced by the random clauses imposed on the set of variables. In the simple
limit that we are considering here, the quenched disorder is represented by the random ±1
variables ε(i1,i2,i3) assigning a clause on the three sites i1, i2 and i3 [14].

For any fixed coupling realization J , the partition function of the spin system with N spins
is given by [18, 19]

ZN [J ] = Trσ exp(−βH[J ; σ ]) (6)

and the quenched free energy per spin is

fN = − 1

Nβ
lnZN = − 1

Nβ

∫
d[J ] P [J ] lnZN [J ] (7)

3 We thank F Zuliani and O Martin for pointing this out.
4 In [14] the reduced inverse temperature was called µ, therefore the substitution µ = √

6β cures the difference.
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where (· · ·) indicates the average over the couplings realizations. We assume that the
thermodynamic limit of the free energy, −limN→∞ lnZN [J ]/Nβ is well defined and is equal to
the quenched free energy f = limN→∞ fN for almost all coupling realizations J (self-average
property).

The analytic computation of the quenched free energy, i.e. of the average of the logarithm
of the partition functions, is a quite difficult problem, even in simple cases such as nearest
neighbour one-dimensional models. However, since the integer moments of the partition
function are easier to compute, the standard method uses the so-called ‘replica trick’ by
considering the annealed free energy f (n) of n non-interacting ‘replicas’ of the system
[16, 18, 19] as

f (n) = − lim
N→∞

1

Nβn
ln

[
(ZN [J ])n

]
. (8)

The quenched free energy of the original system is then recovered as the continuation of f (n)
down to the unphysical limit n = 0 as

f = − lim
N→∞

lim
n→0

(ZN [J ])n − 1

Nβn
= lim
n→0

f (n). (9)

In the last equality we assumed that the replica limit and the thermodynamic limit can be
exchanged. This procedure replaces the original interactions in the real space with couplings
among different replicas. The interested reader can find a complete and detailed presentation
of the replica method for disordered statistical mechanical systems in [18, 19].

In what follows we shall consider disordered spin systems for which f in the replica space
can be written in the form

βf [Qab, ab] = βf0(β)− β2

2
lim
n→0

1

n

1,n∑
a �=b
g(Qab) +

β2

2
lim
n→0

1

n

1,n∑
a �=b
 abQab

− lim
n→0

1

n
log Trσ exp


β2

2

∑
a �=b
 ab σ

aσ b


 (10)

where Qab is the spin-overlap matrix in the replica space between replicas a and b:

Qab = 1

N

N∑
i=1

〈
σai σ

b
i

〉
(11)

and  ab, the Lagrange multiplier associated with Qab, gives the interaction matrix between
spins of different replicas. Angular brackets denote a thermal average. Stationarity of f with
respect to variations of ab and Qab leads to the self-consistency equations for the matrices 
and Q

 ab = g1(Qab) (12)

Qab =
Trσ σ aσ b exp

(
β2

2

∑
a �=b abσ

aσ b
)

Trσ exp
(
β2

2

∑
a �=b abσ aσ b

) (13)

where we have used the short-hand notation

gn(z) ≡ dng(z)

dzn
n = 1, 2, . . . . (14)

The function g and the constant f0 depend on the specific model. For example, for the SK
model we have [16]

g(z) = z2

2
f0 = −β

4
. (15)
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Similarly the p-spin model [17] is recovered for

g(z) = zp

2
f0 = −β

4
. (16)

Finally, for the 3-SAT problem in the limit of low dilution we have5 [14]

g(z) = 1

384
(1 + z)3 f0 = − β

96
+

√
α

48
. (17)

In the following we will use f0 = −β/96, the only consequence being a shifting of the free
energy density f and the internal energy density u by a factor

√
α/48.

4. Infinite replica symmetry breaking solution

4.1. ∞-RSB solution

To evaluate the n → 0 limits in (10) one has to make an ansatz on the structure of matrices 
and Q, i.e. to choose a replica symmetry breaking (RSB) scheme. In order to be as general
as possible, we shall use the RSB scheme introduced by de Dominicis et al [20, 21], which,
besides the Edwards–Anderson order parameter [22], also involves anomalies to the linear
response function, also called Sompolinsky’s anomalies [23]. The more usual Parisi RSB
scheme is recovered by a proper gauge fixing. Here we only report the main results, since the
calculation is straightforward. The interested reader can find some details in [20, 21].

By applying the RSB scheme an infinite number of times and introducing two functions
q(x) and λ(x), 0 � x � 1, one for each matrix, the free energy functional (10) becomes
[20, 21]:

βf (β) = βf0(β) +
β2

2
[g (q(1)) + λ(1)(1 − q(1))] +

β

2

∫ 1

0
dx g1(q(x)) &̇q(x)

− β
2

∫ 1

0
dx[q(x)&̇λ(x) + λ(x)&̇q(x)]

− β
∫ +∞

−∞

dy√
2πλ(0)

exp

(
− y2

2λ(0)

)
φ(0, y) (18)

where φ(0, y) is the solution evaluated at x = 0 of the Parisi equation

φ̇(x, y) = − λ̇(x)
2
φ′′(x, y) +

&̇λ(x)

2
φ′(x, y)2 (19)

with the boundary condition

φ(1, y) = T log (2 coshβy) (20)

and&q(x) and&λ(x) are the anomalies associated with the order parameters q(x) and λ(x). We
have used the standard notation and denote derivatives with respect to x by a dot and derivatives
with respect to y by a prime. Note that with this notation Sompolinsky’s &′ becomes T&̇. It
is easy to see that using (15) one recovers the Sompolinsky functional for the SK model [23],
and inserting Parisi’s gauge &̇q(x) = −βxq̇(x) the Parisi’s functional [24].

Parisi’s equation (19) can be included into the free energy via the Lagrange multiplier
P(x, y) and the initial condition at x = 1 (20) via P(1, y). The free energy then becomes [25]

5 In [14] it was f0 = − µ
16 +

√
α

8 and g(z) = 1
64 (1 + z)3. Due to the over-counting discussed at the end of the

introduction (i.e. µf = 6βf ), these were six times bigger than the actual definition.
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βfv(β) = βf (β) + β
∫ +∞

−∞
dyP(1, y) [φ(1, y)− T log (2 coshβy)]

− β
∫ 1

0
dx

∫ +∞

−∞
dyP(x, y)

[
φ̇(x, y) +

λ̇(x)

2
φ′′(x, y)− &̇λ(x)

2

(
φ′(x, y)

)2
]
.

(21)

By this construction fv is stationary with respect to variations of P(x, y), P(1, y), φ(x, y),
φ(0, y), the order parameters q(x) and λ(x) and anomalies &̇q(x) and &̇λ(x). Variations with
respect to P(x, y) and P(1, y) simply give back equations (19) and (20). Stationarity with
respect to variations of φ(x, y) and φ(0, y) leads to a partial differential equation for P(x, y):

Ṗ (x, y) = λ̇(x)

2
P ′′(x, y) + &̇λ(x)

[
P(x, y) φ′(x, y)

]′
. (22)

with the boundary condition at x = 0

P(0, y) = 1√
2πλ(0)

exp

(
− y2

2λ(0)

)
. (23)

Finally, variations of q(x), &̇q(x), λ(x) and &̇λ(x) lead to

&̇λ(x) = g2(q(x))&̇q(x) (24)

λ(x) = g1(q(x)) (25)

&q(x) = −β[1 − q(1)] +
∫ ∞

−∞
dyP(x, y) φ′′(x, y) (26)

q(x) =
∫ ∞

−∞
dy P(x, y) φ′(x, y)2 (27)

with &q(1) = 0, the anomalies at the shortest timescale, corresponding to x = 1, being zero
by construction.

The Lagrange multiplier P(x, y) gives the probability distribution of local fields. One
may indeed associate a given overlap q(x) with a timescale τx such that for times of order τx ,
states with an overlap equal to q(x) or greater can be reached by the system. In this picture
P(x, y) becomes the probability distribution of frozen local fields y at the time scale labelled
by x [25].

By partial derivation of the above expressions we can obtain some useful relations. For
example, deriving equations (27) and (25), or equivalently (26) and (24), with respect to x,
one gets

g2 (q(x))

∫ ∞

−∞
dy P(x, y) φ′′(x, y)2 = 1. (28)

A further derivation with respect to x leads to

g3(q(x)) q̇(x) + g2(q(x))

∫ ∞

−∞
dy P(x, y) [λ̇(x) φ′′′(x, y)2 + 2&̇λ(x) φ′′(x, y)3] = 0. (29)

Using equations (25) and (24) this becomes

− q̇(x)

&̇q(x)
= − λ̇(x)

&̇λ(x)
= 2

∫
dy∞

−∞P(x, y) φ
′′(x, y)3

g3 (q(x)) + g2 (q(x))
∫ ∞
−∞ dyP(x, y) φ′′′(x, y)2

(30)

which determines the gauge relation between q(x) and &q(x) and between λ(x) and &λ(x),
i.e. Parisi’s βx.
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Finally we note that from equation (27) and the interpretation of the P(x, y) distribution
of local fields, m(x, y) = φ′(x, y) can be interpreted as the local magnetization over the
timescale x. It obeys the equation

ṁ(x, y) = − λ̇(x)
2
m′′(x, y) + &̇λ(x)m(x, y) m′(x, y) (31)

with initial condition

m(1, y) = tanh(βy). (32)

In section 5 we report the results of numerical integration of the above equations for the
specific case of 3-SAT in the limit of a large number of clauses.

4.2. Thermodynamic quantities

Since the free energy density fv (equation (21)) is stationary we can easily calculate
thermodynamic derivatives to compute, for example, the energy density u:

u = ∂

∂β
βfv = ∂

∂β
βf0 + β[g(q(1)) + λ(1)(1 − q(1))] − 1

2

∫ 1

0
dx q(x)&̇λ(x)

+
∫ ∞

−∞
dy P(1, y) φ(1, y)−

∫ ∞

−∞
dy P(0, y) φ(0, y)

−
∫ ∞

−∞
dy P(1, y)y tanh(βy). (33)

This expression can be simplified using the relation∫ ∞

−∞
dyP(1, y)φ(1, y)−

∫ ∞

−∞
dy P(0, y)φ(0, y) = −1

2

∫ 1

0
dx q(x)&̇λ(x). (34)

which follows computing
∫ 1

0 dx
∫ ∞
−∞ dyP(x, y) φ̇(x, y) using either (19) or (22) and equating

the results.
We can equivalently compute u by taking the derivative of the free energy density (10) as

a function of the generic matrix Qab, before any RSB scheme is introduced:

∂

∂β
βf [Qab, ab] = f0(β) + β

∂

∂β
f0(β)− β lim

n→0

1

n

1,n∑
a �=b
g(Qab). (35)

Now by inserting the chosen RSB scheme, and taking the n→ 0 limit, we obtain the alternative
form

u = f0(β) + β
∂

∂β
f0(β) + βg(q(1)) +

∫ 1

0
dx g1(q(x))&̇q(x). (36)

Note that by equating (33) and (36) we get another integral relation:∫ 1

0
dx[q(x)&̇λ(x) + λ(x)&̇q(x)] = −

∫ ∞

−∞
dy P(1, y)y tanh(βy) + β [1 − q(1)]. (37)

Similarly we easily obtain the entropy density,

s = β2 ∂f0

∂β
+
β2

2
[g(q(1)) + λ(1)(1 − q(1))]

+ β
∫ ∞

−∞
dy P(1, y)[log 2 coshβy − y tanh(βy)]. (38)
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4.3. Numerical integration of the ∞-RSB equations

In order to study the low temperature regime of the 3-SAT in the limit of a large number
of clauses we have numerically integrated the ∞-RSB equations to determine q(x), P(x, y)
and m(x, y). We followed the iterative scheme of [25, 26], but with an improved numerical
method which allows for very accurate results for all temperatures.

We start from an initial guess for q(x), thenm(x, y), P(x, y) and the associated q(x) are
computed in order as:

(i) Compute m(x, y) integrating from x = 1 to x = 0 equation (31) with initial condition
(32).

(ii) Compute P(x, y) integrating from x = 0 to x = 1 equation (22) with initial condition
(23).

(iii) Compute q(x) using equation (27).

The steps (i) → (ii) → (iii) are repeated until a reasonable convergence is reached,
typically mean square error on q, P and m is of the orderO(10−6).

The core of the integration scheme is the integration of the partial differential equations
(31) and (22). In previous studies this was carried out through direct integration in the real
space which requires a large grid mesh to obtain precise results. To overcome such problems
we use a pseudo-spectral [27] dealiased [28] code on a grid mesh of Nx × Ny points, which
covers the x-interval [0, 1] and the y-interval [−ymax, ymax]. Dealiasing has been obtained by
a N/2 truncation, which ensures better isotropy of the numerical treatment. The x integration
has been performed using a third-order Adam–Bashfort scheme. Typical values used are
Nx = 100–5000, Ny = 512–4096 and ymax = 12–48. The number of iterations necessary to
reach a mean square error on q, P and m of the order of O(10−6) is a few hundreds. More
details can be found in [28].

5. ∞-RSB solution of the highly constrained 3-SAT problem

In the numerical solution of the ∞-RSB equations we used different gauges depending on the
temperature range. The reason is that the Parisi gauge &̇q = −βxq̇(&̇λ = −βxλ̇), which uses
a simple relation between order parameters and anomalies, leads to numerical instabilities for
large β since it is coupled with a (numerical) derivative. In constrast, since in this gauge the
derivatives go to zero as x → 1, it is rather useful for not too large values of β, typically for T
smaller than 0.02–0.04.

The overlap q(x) for different temperatures is shown in figure 1. The transition between
T = 0.0817 and T = 0.0898 is easily recognizable from the deviation of q(x) from a constant
(the critical value at which the RS solution breaks down is Tc = 0.089725). The rounding
near the plateaux is an artifact of finite Nx. Indeed for increasing Nx the shoulder becomes
steeper and steeper and, in the limit Nx → ∞, q̇(x) develops a discontinuity at the end-points
of the plateaux [29]. By varying the extrema of the x-integration and Nx the end-points of the
plateaux x1 and x2 can be precisely identified. One then concludes that the functional form of
q(x) is similar to that of the SK model in an external magnetic field:

q(x) =


q(0) 0 � x < x1

non-trivial x1 < x < x2

q(1) x2 < x � 1.
(39)

The analytic form of the non-trivial part of q(x) could be obtained from the resummation of
high order expansions of the ∞-RSB equations similarly to what is done for the SK model [29].
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Figure 1. q(x) for the 3-SAT model for temperatures (top to bottom) T = 0.0041, 0.0163, 0.0245,
0.0327, 0.0408, 0.0490, 0.0572, 0.0653, 0.0735, 0.0817, 0.0898.

However, since observables such as q(0), q(1), energy, etc. are not very sensitive (difference
of the order of the numerical precision) to the smoothness of q(x) we did not perform such an
analysis here.

In figure 2 the behaviour of the largest and smallest overlaps q(1) and q(0) as a function
of temperature is compared with the results from 1- and 2-RSB solutions.

For lower temperatures we used Sommers’ gauge which takes an anomaly with constant
derivative [25]. Here at difference with the SK we have two anomalies and hence two possible
choices. However, the more natural one for numerical integration, &̇λ(x) = −&λ(0) = const,
leads to a more involved determination of &λ(0). Indeed we should first find &̇q(x) from
equation (26) and then &λ(0) from (24). Therefore, for low temperatures we adopted
Sommers’ gauge &̇q(x) = −&q(0) = const, where (see equation (26)):

&q(0) = −β[1 − q(1)] +
∫ ∞

−∞
dy P(0, y)m′(0, y) (40)

and &̇λ(x) = −&q(0)g2(q(x)). We note that since &̇λ does not vanish for x → 1 this leads to
numerical instabilities for large temperatures. Therefore, from the point of view of numerical
integration the two gauges are complementary.

The order parameters q(x) and λ(x) are different if we use Parisi’s or Sommers’ gauge, but
the thermodynamics observables are, of course, invariant. This fact has been used to check the
numerical integration by comparing the results from the two gauges in the temperature range
where both are stable.

One of the main advantages of Sommers gauge is that we can solve the equations at
exactly T = 0. In figure 3, for example, we report q(x) for T = 0 in Sommers’ gauge. We
recall that in Parisi’s gauge q(x) = q(1) for x> 0 but q(0) �= q(1), as can also be inferred from
figure 1.

For what concerns the thermodynamic quantities one sees that using (27) and (28) the
entropy must be proportional to T 2 for T → 0 and hence vanishes. Moreover, it also follows
that in the same limit q(1) � 1 − aT 2 [25, 30].
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Figure 2. The order parameter at the slowest (x = 0) and at the fastest (x = 1) timescales as a
function of reduced temperature. As the RSB scheme is improved the splitting between the two
values increases.
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Figure 3. The order parameter q(x) at zero temperature for the 3-SAT model, in the gauge
&̇q = −&q(0).

It can be easily checked that

lim
T→0

[
f0 +

β

2
g(q(1))

]
= lim
T→0

[
∂βf0

∂β
+ βg(q(1))

]
= 0 (41)
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Figure 4. The local field probability distribution P(x, y) for the 3-SAT at T = 0 in Sommers’
gauge.

so that the energy density for T = 0 can be written as

u = fv = −1

2

∫ 1

0
dx q(x)&̇λ(x)−

∫ ∞

−∞
dy P(0, y)φ(0, y). (42)

The last term can be expressed as a function of the local magnetization using the identity

φ(0, y) = φ(0, 0) +
∫ y

0
dy1 m(0, y1) (43)

where

φ(0, 0) =
∫ ∞

0
dy(1 −m(0, y))− 1

2

∫ 1

0
dx &̇λ(x)

=
∫ ∞

0
dy(1 −m(0, y)) +

1

2
&q(0)

∫ 1

0
dx g2(q(x)). (44)

Using the relations derived in section 4, alternative expressions for u can be obtained. For
example, by means of (34) the energy density evaluated for T = 0 takes the form

f = u = −
∫ 1

0
dx q(x)&̇λ(x)− 2

∫ ∞

0
dy yP(1, y). (45)

This can be simplified further using relation (37), which in the chosen gauge at T = 0 becomes

&q(0)
∫ 1

0
dx[q(x)g2(q(x)) + g1(q(x))] = 2

∫ ∞

0
dy P(1, y)y (46)

so that (45) takes the form

u = &q(0)
∫ 1

0
dx q(x)g2(q(x))− 2

∫ ∞

0
dy yP(1, y) = −&q(0)

∫ 1

0
dx g1(q(x)). (47)

For the 3-SAT problem this reads:

u = − 1

128
&q(0)

∫ 1

0
dx(1 + q(x))2. (48)

We conclude this section showing in figure 4 the probability distribution P(x, y) of frozen
fields at T = 0 for different timescales τx . From the figure it is evident that the distribution of
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Figure 5. Entropy density of the 3-SAT model for a large number of clauses. The replica
symmetric, 1-RSB, 2-RSB and ∞-RSB solutions are plotted. For the latter s(0) = 0. On this scale
the 2-RSB and ∞-RSB are almost indistinguishable.

the field y varies continuously from a Gaussian, for the longest timescales, to a double peak
distribution, for short timescales.

6. Thermodynamics of the highly constrained 3-SAT problem

In figure 5 we show the entropy density as a function of temperature down to T = 0. For
each temperature, including T = 0, the data are obtained using the gauge appropriate for that
temperature. For comparison, the entropy computed within the replica symmetric, 1-RSB
and 2-RSB solutions [14] are also plotted. As can be seen from the log–lin plot, the 2-RSB
solution is a very good approximation but yet it is inexact when T < 0.016. The entropy is
zero for T = 0 confirming the conjecture of [6] for the behaviour in the UNSAT-phase. As
expected, s vanishes quadratically with the temperature (see also figure 6).

Finally in figure 7 we show the energy density.
The quantity plotted is actually u(T ) − √

α/48, where α is very large. Equating the
internal energy to zero we can determine an upper bound for the critical value αc of the ratio of
the number of clauses to the number of variables that marks the transition between the UNSAT-
phase (in which we derived our asymptotic model) and the SAT-phase, where the energy is,
by definition, always zero at T = 0. Using the ∞-RSB solution we get αu.b.

c = 7.109 69. For
the 2-RSB solution it was already αu.b.

c = 7.114 00 [14].

7. Conclusions

We performed the study of the replica symmetry breaking solutions of the 3-SAT problem in
the limit of many clauses, mapping it in a poorly diluted spin-glass model with long-range
random quenched interactions. The mapping to a statistical mechanics model was carried out
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Figure 6. Same as figure 5. The improvement in the low temperature region by breaking the
replica symmetry is clearly seen. The data for ∞-RSB are reported as circles to distinguish them
from the quadratic fit.
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Figure 7. Energy density for the 3-SAT problem at high connectivity (α � αc) in the 2-RSB and
∞-RSB solutions. The coincidence between the 2-RSB energy and the ∞-RSB energy is valid up
to order 10−4.

introducing an artificial temperature and taking, in the end, the limit T → 0 to recover the
original model. We found that the structure of the solutions to the problem is of the ∞-RSB
kind: in order to get a stable solution the replica symmetry has to be broken in a continuous
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way, similarly to the SK model [16] (in an external magnetic field). The ∞-RSB structure
holds down to the interesting limit of zero temperature.

No phase transition is expected in the UNSAT phase,other than the SAT-UNSAT transition
occurring at α = αc � 4.2. Therefore, we expect the same ∞-RSB structure of solutions as
found for the over-constrained case to hold also in the critical region.

From the value of the energy at zero temperature we find the upper bound αc < 7.109 69.
to the critical value of the number of clauses per variable. Even if this is of the same order
of magnitude as αc � 4.2 [7] yielded by direct numerical simulations, it is still too large.
We recall that such a value has been obtained through a first-order expansion in 1/

√
α. In

order to get a better approximant other terms should be considered, possibly more then one
since we are dealing with an asymptotic expansion and, therefore, nothing guarantees that the
second-order corrections are small and in the right direction.

Finally, as a by product, in the present paper we worked out a precise procedure to get
the ∞-RSB solution of a general class of models that, besides the over-constrained 3-SAT
model, include SK, p-spin and, more generally, models with any combination of p interacting
terms. We presented the solution exploiting a variational method, introduced by Sommers
and Dupont [25], which has the advantage of being easily implemented on a computer for
any temperature including T = 0. As a consequence the numerical code developed to solve
the present model can be applied to the whole class of models without any relevant change,
providing an efficient tool for the analysis of the structure of the solutions of a large number
of spin models interacting via quenched random couplings.
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